今天重庆云诚科技就给我们广大朋友来聊聊可视化设计平台,以下4个关于信息可视化设计案例分析的观点希望能帮助到您找到想要的答案。
可视化技术的应用实例
本文最佳回答用户:【ひ可爱不黏人@。ε。@】 ,现在由重庆云诚科技小编为你解答与【可视化设计平台】的相关内容!
最佳回答可视化(Visualization)技术是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕上显示出来,并进行交互处理的理论、方法和技术。它涉及到计算机图形学、图像处理、计算机视觉、计算机辅助设计等多个领域,成为研究数据表示、数据处理、决策分析等一系列问题的综合技术,包括科学计算可视化和信息可视化。
在制造业中,广泛应用了各类可视化技术。通过三维CAD软件,设计者不仅可以设计出产品的三维形状和拓扑关系,还可以表达出零件的装配次序;通过数字化工厂(Digital Factory)仿真技术,可以对整个车间和生产线的布局进行仿真,并可以进行人机工程仿真;通过应用三维轻量化技术,可以建立立体的、互动式、多媒体的产品使用与维修手册;而虚拟现实技术能使人们进入一个三维的、多媒体的虚拟世界,在汽车、飞机等复杂产品的设计和使用培训过程中,得到了广泛的应用。
随着科技的蓬勃发展,可视化技术的应用领域越来越广阔。从CT技术到数字人体,可视化技术在医疗与生命科学得到广泛应用;空间信息的可视化,在地理、军事等领域应用日益普遍。
以上就是重庆云诚科技小编解答贡献者:(ひ可爱不黏人@。ε。@)回答的关于“可视化技术的应用实例”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,接下来继续简述下文用户【じ☆ve戒卟鋽】解答的“可视化数据分析报告”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。
可视化数据分析报告
本文最佳回答用户:【じ☆ve戒卟鋽】 ,现在由重庆云诚科技小编为你解答与【可视化设计平台】的相关内容!
最佳回答可视化数据分析报告
可视化数据分析报告,如果职场上有这些现象也不用惊慌,在职场上不能将这些问题一概而论,如果没有一步步的学习深造就不会做出成绩,学会放下自己的职场压力也是很重要的,我这就带你了解可视化数据分析报告。
可视化数据分析报告1
什么是数据可视化
数据可视化是指将数据以视觉形式来呈现,如图表或地图,以帮助人们了解这些数据的意义。
文本形式的数据很混乱(更别提有多空洞了),而可视化的数据可以帮助人们快速、轻松地提取数据中的含义。用可视化方式,您可以充分展示数据的模式,趋势和相关性,而这些可能会在其他呈现方式难以被发现。
数据可视化可以是静态的或交互的。几个世纪以来,人们一直在使用静态数据可视化,如图表和地图。交互式的数据可视化则相对更为先进:人们能够使用电脑和移动设备深入到这些图表和图形的具体细节,然后用交互的方式改变他们看到的数据及数据的处理方式。
谈谈数据可视化
人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。
但是,并非所有的数据可视化是平等的。
那么,如何将数据组织起来,使其既有吸引力又易于理解通过下面的16个有趣的例子获得启发,它们是既注重风格和也注重内容的数据可视化案例。
(1)世界上的语言
这个由DensityDesign设计的互动是个令人印象深刻的成果,它将世界上众多(或者说,我们大多数人)的语言用非语言的方法表现出来。一共有2678种。
这件作品可以让你浏览使用共同语言的家庭,看看哪些语言是最常用的,并查看语言在世界各地的使用范围。这是一种了不起的视觉叙事方法:将一个有深度的主题用一种易于理解的方式解读。
(2)按年龄段分布的美国人口百分比
这是如何以令人信服的方式呈现一种单一的数据的好榜样。PewResearch创造了这个GIF动画,显示随着时间推移的人口统计数量的变化。这是一个好方法,它将一个内容较多的故事压缩成了一个小的package。
此外,这种类型的微内容很容易在社交网络上分享或在博客中嵌入,扩大了内容的传播范围。如果你想自己用Photoshop做GIF,这里有一个详细的教程。
(3)NFL(国家橄榄球联盟)的完整历史
体育世界有着丰富的数据,但这些数据并不总是能有效地呈现(或者准确的说,对于这个问题)。然而,FiveThirtyEight网站做的特别好。在下面这个交互式可视化评级中,他们计算所谓“等级分”–根据比赛结果对球队实力进行简单的衡量–在国家橄榄球联盟史上的每一场比赛。总共有超过30,000个评级。观众可以通过比较各个队伍的等级来了解每个队伍在数十年间的比赛表现。
(4)政治新闻受众渠道分布图
据Pew研究中心称,通常,当设计师在信息内容很多又不能删节的时候,他们通常会把信息放到数据表中,以使其更紧凑。但是,他们使用分布图来代替。为什么呢因为分布图可以让观众在频谱上看到每个媒体的渠道。在分布图上,每个媒体的渠道之间的距离尤为显著。如果这些点仅仅是在表中列出,观众无法看到每个渠道之间的比较。
(5)Kontakladen慈善年度报告
不是所有的数据可视化都需要用动画的形式来表达。当现实世界的数据通过现实生活中的例子进行可视化,结果会令人惊叹。设计师MarionLuttenberger把包含在Kontakladen慈善年报中的数据以一种独特的方法表现出来。该组织为奥地利的吸毒者提供支持,所以Luttenberger的使命就是通过真实的视觉来宣传。例如,这辆购物车形象的表现了受助者每一天可以负担得起多少生活必需品。
可视化数据分析报告2
什么是可视化数据分析报告?
所谓的可视化数据分析报告就是用视觉表现形式的数据,对其进行全方位的透析,从而提供决策者有根据、有依据地进行判断。
简单来说就是用图形的方式来表征数据的.规律。
一般来说,数据分析报告分为三类:日常运营报告、专项研究报告、行业分析报告。
但无论是哪一类型的报告,都可能不可避免的需要做可视化,那么可视化数据分析报告要怎么做呢?
首先在写报告前,要知道包含哪些内容:目标确定、数据获取、数据清洗、数据整理、描述分析、洞察结论,最后才是撰写数据分析报告。
这是我依据XX学校的学生成绩数据做的三年级学生成绩分析报告,不仅有可视化图表支持分析,还有分析原因,图文并茂,更加容易找出问题原因。
同时还能打印报告和线上分享,电子报告+纸质报告,方便校长审阅与同事们的查看。
这样的可视化数据分析报告我只用了三步:
确定目标:三年级学生成绩整理数据:将所有的三年级学生成绩数据导入库中,然后依据分析目标来做可视化数据分析图表,比如,各班期初、期中、期末考试情况……利用数据报告的功能,通过简单的拖拽操作,快速生成你想要的数据可视化报告并附加分析原因。这样一份又直观、又好看的分析报告就好了。
为什么要做可视化数据分析报告?
传递快更直观的展示信息,从而优化运营和管理流程响应分析需求,多角度分析挖掘信息最后要明白一点,可视化数据分析报告的核心是分析,只有数据分析内涵丰富、价值高,数据可视化才能内容丰富、有价值。
可视化数据分析报告3
1、将数据,数据相关绘图,数据无关绘图分离
这点可以说是ggplot2最为吸引人的一点。众所周知,数据可视化就是将我们从数据中探索的信息与图形要素对应起来的过程。
ggplot2将数据,数据到图形要素的映射,以及和数据无关的图形要素绘制分离,有点类似java的MVC框架思想。这让ggplot2的使用者能清楚分明的感受到一张数据分析图真正的组成部分,有针对性的进行开发,调整。
2、图层式的开发逻辑
在ggplot2中,图形的绘制是一个个图层添加上去的。举个例子来说,我们首先决定探索一下身高与体重之间的关系;然后画了一个简单的散点图;然后决定最好区分性别,图中点的色彩对应于不同的性别;然后决定最好区分地区,拆成东中西三幅小图;最后决定加入回归直线,直观地看出趋势。这是一个层层推进的结构过程,在每一个推进中,都有额外的信息被加入进来。在使用ggplot2的过程中,上述的每一步都是一个图层,并能够叠加到上一步并可视化展示出来。
3、各种图形要素的自由组合
由于ggplot2的图层式开发逻辑,我们可以自由组合各种图形要素,充分自由发挥想象力
上文就是重庆云诚科技小编分享贡献者:(じ☆ve戒卟鋽)回答的关于“可视化数据分析报告”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,现在接着继续表述下文用户【╄→寒冷的冰?;?】分享的“大数据的数据可视化是什么样的?”的一些相关问题做出分析与解答,如果能找到你的答案,可以关注本站。
大数据的数据可视化是什么样的?
本文最佳回答用户:【╄→寒冷的冰?;?】 ,现在由重庆云诚科技小编为你分析与【可视化设计平台】的相关内容!
最佳回答在大数据可视化这个概念没出现之前,其实人们对于数据可视化的应用便已经很广泛了,大到人口数据,小到学生成绩统计,都可通过可视化展现,探索其中规律。如今信息可以用多种方法来进行可视化,每种可视化方法都有着不同的侧重点。
数据的特性:
数据可视化,先要理解数据,再去掌握可视化的方法,这样才能实现高效的数据可视化。在设计时,你可能会遇到以下几种常见的数据类型:
量性:数据是可以计量的,所有的值都是数字
离散型:数字类数据可能在有限范围内取值。例如:办公室内员工的数目
持续性:数据可以测量,且在有限范围内,例如:年度降水量
范围性:数据可以根据编组和分类而分类,例如:产量、销售量
传统的数据可视化以各种通用图表组件为主,不能达到炫酷、震撼人心的视觉效果。优秀的数据可视化设计需要有炫酷的视觉效果,让可视化设计随时随地脱颖而出。这时用三维元素的添加制造出空间感可以大大的加大画面层次感,且可以多维度观察,每个角度可能会产生震撼的视觉体验。百闻不如一见,下图是图扑软件(Hightopo)做过的一些三维设计案例:
图注:图扑软件
有许多的大屏设计案例都会涉及二维和三维相融合,需要整体的考虑风格一致。风格一致可以从色调与元素使用样式来做到统一,没有违和感。
图注:图扑软件
图注:图扑软件
以上就是重庆云诚科技小编解疑贡献者:(╄→寒冷的冰?;?)解答的关于“大数据的数据可视化是什么样的?”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续表述下文用户【南…巷孤猫】解答的“大数据可视化设计到底是啥,该怎么用”的一些相关问题做出分析与解答,如果能找到你的答案,可以关注本站。
大数据可视化设计到底是啥,该怎么用
本文最佳回答用户:【南…巷孤猫】 ,现在由重庆云诚科技小编为你探讨与【可视化设计平台】的相关内容!
最佳回答大数据可视化是个热门话题,在信息安全领域,也由于很多企业希望将大数据转化为信息可视化呈现的各种形式,以便获得更深的洞察力、更好的决策力以及更强的自动化处理能力,数据可视化已经成为网络安全技术的一个重要趋势。
文章目录
一、什么是网络安全可视化
1.1 故事+数据+设计 =可视化
1.2 可视化设计流程
二、案例一:大规模漏洞感知可视化设计
2.1整体项目分析
2.2分析数据
2.3匹配图形
2.4确定风格
2.5优化图形
2.6检查测试
三、案例二:白环境虫图可视化设计
3.1整体项目分析
3.2分析数据
3.3 匹配图形
3.4优化图形
3.5检查测试
一、什么是网络安全可视化
攻击从哪里开始?目的是哪里?哪些地方遭受的攻击最频繁……通过大数据网络安全可视化图,我们可以在几秒钟内回答这些问题,这就是可视化带给我们的效率 。 大数据网络安全的可视化不仅能让我们更容易地感知网络数据信息,快速识别风险,还能对事件进行分类,甚至对攻击趋势做出预测。可是,该怎么做呢?
1.1 故事+数据+设计 =可视化
做可视化之前,最好从一个问题开始,你为什么要做可视化,希望从中了解什么?是否在找周期性的模式?或者多个变量之间的联系?异常值?空间关系?比如政府机构,想了解全国各个行业漏洞的分布概况,以及哪个行业、哪个地区的漏洞数量最多;又如企业,想了解内部的访问情况,是否存在恶意行为,或者企业的资产情况怎么样。总之,要弄清楚你进行可视化设计的目的是什么,你想讲什么样的故事,以及你打算跟谁讲。
有了故事,还需要找到数据,并且具有对数据进行处理的能力,图1是一个可视化参考模型,它反映的是一系列的数据的转换过程:
我们有原始数据,通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。
将这些数值转换成视觉结构(包括形状、位置、尺寸、值、方向、色彩、纹理等),通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。
将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。
最后,我们还得选择一些好的可视化的方法。比如要了解关系,建议选择网状的图,或者通过距离,关系近的距离近,关系远的距离也远。
总之,有个好的故事,并且有大量的数据进行处理,加上一些设计的方法,就构成了可视化。
1.2 可视化设计流程
一个好的流程可以让我们事半功倍,可视化的设计流程主要有分析数据、匹配图形、优化图形、检查测试。首先,在了解需求的基础上分析我们要展示哪些数据,包含元数据、数据维度、查看的视角等;其次,我们利用可视化工具,根据一些已固化的图表类型快速做出各种图表;然后优化细节;最后检查测试。
具体我们通过两个案例来进行分析。
二、案例一:大规模漏洞感知可视化设计
图2是全国范围内,各个行业漏洞的分布和趋势,橙黄蓝分别代表了漏洞数量的高中低。
2.1整体项目分析
我们在拿到项目策划时,既不要被大量的信息资料所迷惑而感到茫然失措,也不要急于完成项目,不经思考就盲目进行设计。首先,让我们认真了解客户需求,并对整体内容进行关键词的提炼。可视化的核心在于对内容的提炼,内容提炼得越精确,设计出来的图形结构就越紧凑,传达的效率就越高。反之,会导致图形结构臃肿散乱,关键信息无法高效地传达给读者。
对于大规模漏洞感知的可视化项目,客户的主要需求是查看全国范围内,各个行业的漏洞分布和趋势。我们可以概括为三个关键词:漏洞量、漏洞变化、漏洞级别,这三个关键词就是我们进行数据可视化设计的核心点,整体的图形结构将围绕这三个核心点来展开布局。
2.2分析数据
想要清楚地展现数据,就要先了解所要绘制的数据,如元数据、维度、元数据间关系、数据规模等。根据需求,我们需要展现的元数据是漏洞事件,维度有地理位置、漏洞数量、时间、漏洞类别和级别,查看的视角主要是宏观和关联。涉及到的视觉元素有形状、色彩、尺寸、位置、方向,如图4。
2.3匹配图形
2.4确定风格
匹配图形的同时,还要考虑展示的平台。由于客户是投放在大屏幕上查看,我们对大屏幕的特点进行了分析,比如面积巨大、深色背景、不可操作等。依据大屏幕的特点,我们对设计风格进行了头脑风暴:它是实时的,有紧张感;需要新颖的图标和动效,有科技感;信息层次是丰富的;展示的数据是权威的。
最后根据设计风格进一步确定了深蓝为标准色,代表科技与创新;橙红蓝分别代表漏洞数量的高中低,为辅助色;整体的视觉风格与目前主流的扁平化一致。
2.5优化图形
有了图形后,尝试把数据按属性绘制到各维度上,不断调整直到合理。虽然这里说的很简单,但这是最耗时耗力的阶段。维度过多时,在信息架构上广而浅或窄而深都是需要琢磨的,而后再加上交互导航,使图形更“可视”。
在这个任务中,图形经过很多次修改,图7是我们设计的过程稿,深底,高亮的地图,多颜色的攻击动画特效,营造紧张感;地图中用红、黄、蓝来呈现高、中、低危的漏洞数量分布情况;心理学认为上方和左方易重视,“从上到下”“从左至右”的“Z”字型的视觉呈现,简洁清晰,重点突出。
完成初稿后,我们进一步优化了维度、动效和数量。维度:每个维度,只用一种表现,清晰易懂;动效:考虑时间和情感的把控,从原来的1.5ms改为3.5ms;数量:考虑了太密或太疏时用户的感受,对圆的半径做了统一大小的处理。
2.6检查测试
最后还需要检查测试,从头到尾过一遍是否满足需求;实地投放大屏幕后,用户是否方便阅读;动效能否达到预期,色差是否能接受;最后我们用一句话描述大屏,用户能否理解。
三、案例二:白环境虫图可视化设计
如果手上只有单纯的电子表格(左),要想找到其中IP、应用和端口的访问模式就会很花时间,而用虫图(右)呈现之后,虽然增加了很多数据,但读者的理解程度反而提高了。
3.1整体项目分析
当前,企业内部IT系统复杂多变,存在一些无法精细化控制的、非法恶意的行为,如何精准地处理安全管理问题呢?我们的主要目标是帮助用户监测访问内网核心服务器的异常流量,概括为2个关键词:内网资产和访问关系,整体的图形结构将围绕这两个核心点来展开布局。
3.2分析数据
接下来分析数据,案例中的元数据是事件,维度有时间、源IP、目的IP和应用,查看的视角主要是关联和微观。
3.3 匹配图形
根据以往的经验,带有关系的数据一般使用和弦图和力导向布局图。最初我们采用的是和弦图,圆点内部是主机,用户要通过3个维度去寻找事件的关联。通过测试发现,用户很难理解,因此选择了力导向布局图(虫图)。第一层级展示全局关系,第二层级通过对IP或端口的钻取进一步展现相关性。
3.4优化图形
优化图形时,我们对很多细节进行了调整: – 考虑太密或太疏时用户的感受,只展示了TOP N。 – 弧度、配色的优化,与我们UI界面风格相一致。 – IP名称超长时省略处理。 – 微观视角中,源和目的分别以蓝色和紫色区分,同时在线上增加箭头,箭头向内为源,向外是目的,方便用户理解。 – 交互上,通过单击钻取到单个端口和IP的信息;鼠标滑过时相关信息高亮展示,这样既能让画面更加炫酷,又能让人方便地识别。
3.5检查测试
通过调研,用户对企业内部的流向非常清楚,视觉导向清晰,钻取信息方便,色彩、动效等细节的优化帮助用户快速定位问题,提升了安全运维效率。
四、总结
总之,借助大数据网络安全的可视化设计,人们能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。
可视化设计的过程中,我们还需要注意:1、整体考虑、顾全大局;2、细节的匹配、一致性;3、充满美感,对称和谐。
今天的内容先分享到这里了,读完本文《「可视化设计平台」信息可视化设计案例分析》之后,是否是您想找的答案呢?想要了解更多,敬请关注本站(www.cqycseo.com),您的关注是给小编最大的鼓励。
推荐文章:
本文由网上采集发布,不代表我们立场,转载联系作者并注明出处:https://www.cqycseo.com/kangadmin/makehtml_archives_action.php?endid=0&startid=-1&typeid=15&totalnum=6115&startdd=2540&pagesize=20&seltime=0&sstime=1679321406&stime=&etime=&uptype=&mkvalue=0&isremote=0&serviterm=